
What is object storage? How does object storage vs file system compare? When should
object storage be used? This short paper looks at the technical side of why object storage

is often a better building block for storage platforms than file systems are.

www.object-matrix.com
 info@object-matrix.com

+44(0)2920 382 308

What is Object Storage?

Object Matrix Ltd
Experts in Digital Content Governance & Object Storage

Centera the trail blazer…

However, whilst Centera sold well – some sources say over 600PB
were sold – there were fundamental issues with the product.
Companies railed against having to use a “proprietary API” for data
access and a simple search on a search engine shows that
Centera had plenty of complaints about its performance. It wasn’t
long until the industry was calling time on Centera and its “content
addressable storage” (CAS) version of object storage: not only
that, but it had single handedly given object storage a bad name.
Articles such as “Centera, end of an era or end of an error?”
abounded – it was fashionable in large companies to cling on to the
past. But the pronounced end just didn’t happen4.

In, 2005 I had a meeting with a “next
generation guru” of a top 3 storage
company, and he boldly told me: “There is
no place for Object Storage. Everything
you can do on object storage can be
done in the filesystem. No one wants to
use APIs.” Funny how the largest storage
company in the world could now be
argued to be Amazon rather than one of
the traditional players…

1 https://en.wikipedia.org/wiki/Object_storage
2 https://en.wikipedia.org/wiki/Content-addressable_storage
3 The author of this document, Jonathan Morgan, worked for FilePool before it became a part of EMC
4 It was around this time, 2003, that Object Matrix bucked the trend, developing MatrixStore;
5 One enterprise implementation of this is block storage.

The Rise of Object Storage

What exactly Object Storage is made of will be discussed later; its benefits and its limitations included. But first of all a brief
history of the rise of Object Storage:
Concepts around object storage can be dated back to the 1980’s1 , but it wasn’t until around 2002 when EMC launched
Centera to the world – a Content Addressable Storage product2 - that there was an object storage product for the world in
general3.

Block and File Storage
Think of data storage and most people think of a filesystem. Within that is a hierarchy of files wherein you start from a top
directory and drill down through the directories to the file that is required.

How the computer sees a filesystem is important to understand the benefits and problems. Under the hoods everything on
a HDD (file system or otherwise) is in small blocks of bytes, e.g., 4096 bytes. The files we see are often made up of many
blocks of bytes5.

Object Storage Post Centera…

Need is a great leveller and perceptions have now changed. Mass cloud storage with required demands on performance,
distribution, metadata handling and notably scale went to a level never previously seen because of the Internet. Billions of
people wanting to access the same resources such as Facebook or Google created unique problem sets. Those compa-
nies and many like them needed to be able to store more data than could possibly be kept within a filesystem and needed
a truly scalable solution quickly. Amazon created an internal object storage system for their own purposes and notably, in
2006 they turned that into their S3 cloud storage solution. S3, Google and many other players were all turning to object
storage and the world’s population were now using object storage, even if they didn’t have a clue what it was!

Years of blinkered belief in the “filesystem fits all” were over and fast track to today; Object Storage is well and truly accept-
ed as a better way to store and access data, in many many use cases, over the once ubiquitous file system.
And yet, whilst use cases for file and block storage are well understood, object storage remains a concept that is confusing
to many and often misunderstood. Is it only for large internet based solutions? Can you search in an object storage? Are all
object storage systems alike?

The “filesystem” is the software that can read, write and interpret those blocks of data to allow people to store and read
files. The file system knows which blocks make up a file because it keeps a list of the order and locations of the blocks.
Sometimes the filesystem keeps those lists of blocks in what is termed a “metadata server”. The metadata servers keep not
only what blocks make up a file, but also the hierarchy of the files, the file names and other pieces of metadata about the
files such as when the file was last accessed.

Where filesystems are great is:

They are well understood; around for decades, most software understands filesystems

Sharing files between a group of computers since the filesystem protocols exist on many clients

Performance within a predictable network – they lock and unlock files efficiently and provide almost direct block level
access

But filesystems just aren’t made with the building blocks that are required when it comes to the demands of large scale,
long term or highly flexible data storage such as:

Filesystems don’t general handle descriptive metadata6 at all (or at least in a search context). Where they do, it tends
to be very proprietary.

Their view of the world is a top-down hierarchy – this is very inflexible (“did I store that file as “weddings/july” or
“july/weddings” etc).

Filesystems have trouble with scale beyond certain size: this is caused by the lock manager, the metadata database,
highly-coupled nodes in scale-out solutions, etc.

Filesystems often have expectations around speed of reply (timeouts) and therefore don’t scale well in high latency
networks (internet etc).

At worst, even in local systems this makes filesystems highly dependent on the underlying hardware being of very
similar speeds, creating issues with future upgrades of hardware.

Applications have to decide where in the hierarchy to put the files.

File systems, being well understood, having little in the way of authentication, often only need a single “rouge client” to
be extremely susceptible to malicious or accidental data lost.

One spin off issue from file systems being very bad at scaling (especially with different hardware over time) is that organi-
sations often end up with multiple individual file systems / hardware solutions (“data silos”) rather than a single storage
pool.

However, that said many solution stacks are built on top of filesystems, taking advantage of filesystems well-known
behaviours and wide support.

Object Storage

Common amongst most object storage systems are that they store objects:

Objects are unstructured – they do not inherently have relationship to one another, e.g., are not immediately arranged
into directories or other hierarchies

Objects are simply identified with a GUID (globally unique ID)

Objects consist of metadata and data (typically a file, but it could also be any record of information)

The object storage system itself then:

Provides a space and an API wherein and whereby objects can be stored and retrieved

Will often apply storage policies, e.g., to distribute objects across multiple geographic locations

This “building block” provides the following benefits over the filesystem approach:

Freedom from the constraints of metadata controllers

Freedom from the constraints of a fixed data hierarchy

The possibility to build highly scalable and flexible implementations

A focus on using an “API” that includes the storage and usage of metadata

A freedom for the object storage system to arrange objects on multiple servers, e.g., across multiple geographies

Let’s define object storage.

6 https://en.wikipedia.org/wiki/Metadata

Universal Object Storage Characteristics

 7 An example is that MatrixStore from Object Matrix that is built for low latencies in many of its workflows

Automated maintenance of data storage policies –
e.g., minimum data redundancy levels of objects

A searchable distributed metadata database

Compliance Regulation Policy features such as audit
trails, security features, time based restrictions

Scalability from Gigabytes to Exabytes

Hardware independence

Single namespace, even across multiple geographies

Automated local caching of popular data

Cluster self-healing (e.g., where a single location is
down)

These are just a few of the features that often exist, but the reality is, at the end of the day every object storage solution
has its own feature set, strengths and trade-offs.

Is Object Storage All the Same?
Gartner, March 2016 published10:

Object storage is characterized by access through RESTful interfaces via a standard Internet Protocol (IP), such
as HTTP, that have granular, object-level security and rich metadata that can be tagged to it. Object storage
products are available in a variety of deployment models - virtual appliances, managed hosting, purpose-built
hardware appliances or software that can be installed on standard server hardware. These products are capable
of huge scale in capacity … They are better-suited to workloads that require high bandwidth than transactional
workloads that demand high IO/s and low latency.

2003, Object Matrix developed its product MatrixStore to address all of those features but with a focus upon speed of
access / updating of objects thereby allowing natural filesystem type browsing and updating of objects (a business
focus) over and above features that are focused on worldwide distribution of content (a B2C focus). Additionally Object
Matrix added features for regulation compliance, deep data analysis and media industry features that understand
media data and media plugins.

APIs including UDP, TCP/IP, RCP, RESTful, SOAP
types

Replication

Object level security

Multi-tenancy
Highly scalable aggregate bandwidths (as the object
storage system grows, so does the aggregate
bandwidth)

Data analytic tools and management APIs

Authenticated and check-summed storage and
delivery of data

The main point is this: the filesystem is a structural constraint and an overhead and by storing data as simple objects via an
API the solution is now free to build a vast array of more flexible and powerful structures for handling data. We’ll look at key
drivers for its adoption later.

The above is an interesting definition, born out of the “norm” of how analysts currently see the marketplace, but it most
certainly a very limited description of object storage. There isn’t a reason why transactional workloads should be slower on
object storage than via a filesystem nor is there an intrinsic reason why object storage should have high latencies7. And,
just because many object storage solutions have gone down the path of RESTful interfaces, wide area data distribution
algorithms and rich metadata filing, doesn’t mean that all object storage solutions have to go down those routes.

However, perhaps this demonstrates just how far object storage has come. There are different categories of object storage
that are fit for different purposes. You wouldn’t use Amazon S3 for transactional workflows and you wouldn’t use Object
Matrix MatrixStore for B2C workflows where the “C” could be a million people all wanting to access the same object at the
same time.

Features often found in object storage, but not always, include:

Prevalent Object Storage Characteristics

One major difference between how Object Storage is implemented by different manufacturers is whether individual objects
stored should be “sliced” across multiple nodes or kept in their entirety: multiple instances.

Data slicing algorithms can conceptually be thought about as something like a “RAID6” algorithm where the object is split
into data and parity slices and each slice is kept on a separate node (this isn’t a strict definition but it is helpful if you
understand RAID). In fact, more modern algorithms based on Reed-Solomon algorithms allow variable numbers of “parity”
blocks to be kept – one such vendor, CleverSafe, talks about an “m+n”, “10+5” algorithm where if even 5 locations were
down then the data could still be read from the other 10 locations.

Other vendors, including Object Matrix, use a multiple instance algorithm that puts the individual instances at more than
one location. With Object Matrix each location is typically RAID6 meaning that with 2 instances 6 disks would have to
simultaneously fail before data couldn’t be read.

While seeming like a fairly “technical” point the choice between algorithms has far reaching consequences8.

8 This is not unlike Object Storage as a building block – the foundation changes are subtle but the impact becomes large as
the systems become larger.

Multiple Instances vs Splitting Data

Multiple Instances (MI)Feature
M+N data distribution (M+N Erasure
Codes)

Minimum
number of
nodes

Normally from 8 to 15 nodes (m+n = 6+2 or
10+5). A m+n 2+1 is possible but means just 2
disks going down could result in data loss in
some implementations.

Typically 2 nodes only.

Winner?

Single Location
& Physical disk
space required
overhead

Replication &
physical disk
space overhead

Data Analytics

Data Writing /
Reading. Data
throughput

Encryption and
Data Security

100% if 2 instances of the
data are kept – could be
120% with RAID6 etc.

If 1 instance at or MI each
geography – then just the
overhead of e.g., RAID6 at
each geography.

MI: Can start with smaller
systems. In the worst
case M+N might require
15 separate nodes just to
start with.

A 10+5 algorithm creates only a 50% overhead. M+N or MI: Clearly M+N
has a lower total disk
space overhead at a
single site to keeping
multiple instances but only
if data is kept at a single
geographic location.
(see “Replication”)

Possibly 10+5 at each geography. MI: Where replication is
used typically MI will use
less disk space.

Each instance can be
read and analysed. For
Object Matrix this can be
done within the node with
out needing to read the
data out to a “client”
machine and every node
can analyse its data
simultaneously.

To analyse data, it must be rejoined,
probably at a client machine.

MI: Clearly analytics are
possible in both solutions
but where it can be done
within a node then it is
hugely beneficial in
terms of system load.

Data can be streamed
direct to/from a single
location, which can
simultaneously stream to
a second location.

Data must be split into multiple locations this
can be done as a background task after data
has written but then there is a period when data
isn’t protected at the suggested level. Alterna-
tively it can be done in the client or as it arrives
– both requiring CPU / creating latency.

MI: Although both systems
have their advantages and
disadvantages, MI
typically has less
overhead. Where M+N
can sometimes win is
where data is streamed
from multiple locations to
a single location during
reads (thus taking
advantage of more
hardware).

Data can be stored
encrypted, but typically all
data is kept in a single
location.

Data parts can be kept in geographically
separate locations. Whilst this is impractical in
terms of speed when joining up the parts to read
the object, it does have the advantage of
scattering the object across multiple locations.

M+N? Although at the
cost of distributed reads
otherwise equal.

Object Matrix Ltd
To learn more about Object Storage, please visit
www.object-matrix.com or contact us to info@object-matrix.com | +44(0)2920 382 308

Conclusion
Object storage has come a long way from an ostracised/niche solution to storing vast amounts of the world’s data. Its
popularity is only growing and whilst the filesystem is here to stay, it is by no means the only kid on the block anymore (pun
intended!).

Within itself “Object Storage” is actually a very simple building brick but because it is a powerful concept often complex,
feature rich solutions have been built to preserve and distribute data.

As so often happens with a technology that grows in popularity there are likely to be schisms in the term “object storage” as
time goes on: object storage for public cloud, object storage for fast data access and object storage for private cloud are all
functionally quite different from each other and rarely compete with each other.

Lastly, object storage solutions can likely offer every major organisation that stores a quantity of unstructured data a better,
safer, more future proof and more integrated with other applications way to keep their data in a truly accessible and reusa-
ble manner.

About the Author
Jonathan Morgan researched Grid Computing at Texas Christian University in the 1990’s. In his work career he joined
FilePool briefly before it was acquired by EMC for its object storage technology. That product went on to become “Cen-
tera”, one of the world’s first commercially successful object storage solutions. At EMC Jonathan led the largest develop-
ment team for Centera developing “content parity protection” (an erasure code algorithm). Founding Object Matrix in 2003,
Jonathan has been the CEO since its inception seeing the company grow from a concept to storing data for some of the
world’s largest media organisations. Object Matrix is based in Cardiff, UK.

One concern with Object Storage is that by using a proprietary API vendor Lock-in can start to occur.

However, to counter-act that, where object storage can be mounted using FTP or filesystem interfaces then it can be
argued that the vendor lock-in is limited to just the metadata. Some manufacturers are pushing the S3 API as a type of
defacto “standard”, though that API is not universally loved (it is truly complex and has very limited metadata manipulation)
and cannot perform many of the features that are available on some other object storage solutions such as analytics or
metadata searching.

Object Storage Weaknesses

Key drivers for object storage adoption can include any of the follow:

Key Drivers for Object Storage Adoption

A desire for a deeper protection of data stored

• Using: authenticated delivery, automated data redundancy policies etc

Wishing to unify a large pool of storage, e.g., as a “private cloud”

• Using: scalability; an ability to virtualise hardware so that new hardware can be added to the existing storage pool
without throwing out the old hardware, etc

Wishing to share and utilise metadata without having to create separate databases that are difficult to keep in sync
with the data being stored, e.g., between applications

A desire to analyse data, especially unstructured data

Requirement to reduce management overhead of storing, maintaining and making available petabytes of data

Security concerns about storing data in a filesystem

Building a solution that can span multiple tiers of storage including public cloud

Regulation compliance requirements

There are of course many more drivers that could be mentioned besides.

